Делимость 8 класс "В" 30 ноября 2011 г.

В арифметике по модулю мы научились выполнять три основные операции: $+, -, \times$, и до сих пор молчаливо обходили вопрос существования операции деления.

В обычной арифметике деление определялось как операция обратная умножению, если $5 \cdot 2 = 10$, то 10 : 2 = 5. Назовем частным от деления числа a на d по модулю m такое число b, что $a \equiv bd \pmod{m}$.

1. Найдите частное от деления a на d

		0	1	2	3	4			
a)	0								
	1			3	2				
	2			1					
	3								
	4								
	$\mod 5$								

α									
		0	1	2	3	4	5		
b) ·	0								
	1		1						
	3								
	3								
	4								
	5								
	$\mod 6$								

Из задачи 1 следует, что деление в арифметике по модулю осуществимо не всегда (но гораздо чаще, чем деление нацело в обычной арифметике, $1:3\equiv 2\pmod 5$).

2. Если 1 делится на a по модулю m, то и любое число b делится на a по модулю m.

Число а называется обратимым в арифметике по модулю m, если существует такое число a^{-1} , что $aa^{-1} \equiv 1 \pmod m$. Число a^{-1} называется обратным к числу a по модулю m.

- **3.** Найдите обратные числа по модулю 7 к числам 1, 2, 3, 4, 5, 6. Число $a \neq 0$ называется **делителем нуля в арифметике по модулю** m, если существует отличное от нуля число b, что $ab \equiv 0 \pmod{m}$.
- 4. Найдите делители нуля в арифметике по модулю 8.
- **5.** Докажите, что число не может быть одновременно и обратимым и делителем нуля.
- 6. Докажите, что, если число обратимо, то обратное к нему единственно.

- 7. Докажите, что если m составное число, то найдется число a, являющееся делителем нуля по модулю m.
- 8. Докажите, что если a не делитель нуля, то
- а) a^2, a^3, a^4, \ldots тоже не являются делителями нуля;
- b) среди чисел a^2, a^3, a^4, \dots должна найтись единица.
- **9.** Докажите, что если m простое число, все числа отличные от нуля, обратимы.
- 10. Докажите, что если m составное число, все числа взаимно простые с m, обратимы.
- **11.** Докажите малую теорему Ферма: если p простое, то $n^p \equiv n \pmod p$.
- **12.** Докажите **теорему Вильсона**: если p простое, то $(p-1)! \equiv -1 \pmod{p}$.
- 13. Докажите китайскую теорему об остатках: для любых попарно взаимно простых чисел m_1, m_2, \ldots, m_n и любых натуральных $r_1 < m_1, \ldots, r_n < m_n$ найдется такое число N, что $N \equiv r_1 \pmod{m_1}, \ldots, N \equiv r_n \pmod{m_n}$