Вычисление расстояний

Расстояние от точки до прямой и до плоскости

Определение. Если среди всех расстояний между точками, одна из которых принадлежит фигуре F_1 , а другая — фигуре F_2 , существует наименьшее, то оно называется расстоянием между фигурами F_1 и F_2 .

- 125. Приведите примеры фигур, расстояние между которыми не определено.
- 126. Докажите, что расстояние от точки до прямой (плоскости) равно длине перпендикуляра, опущенного из этой точки на эту прямую (плоскость).
- 127. Высота SO правильной пирамиды SABCD равна 2a, AB = a, K середина отрезка AO. Найдите расстояния до прямой SK a) от точки C; б) от точки E, симметричной точке A относительно D.
- 128. ABCD правильный тетраэдр с ребром *a*. Точки М и N середины ребер соответственно BD и AC. Найдите расстояние до прямой MN от точек: a) B; б) К середины ребра AB; в) О точки пересечения медиан основания ABC;. г) Е середины отрезка DO.
- 129. Расстояние от точки M до вершины прямого угла равно 12, а длины перпендикуляров, опущенных из M на стороны этого угла, равны 8 и 9. Найдите расстояние от M до плоскости данного прямого угла.

Свойства расстояния от точки до плоскости

- 1. Точки прямой, параллельной плоскости, удалены от этой плоскости на одинаковое расстояние. Оно равно расстоянию от этой прямой до плоскости.
- 2. Точки плоскости α , параллельной плоскости β , удалены от плоскости β на одинаковое расстояние. Оно равно расстоянию между плоскостями α и β .
- 3. Пусть точки A и B принадлежат наклонной, пересекающей плоскость α в точке C. Тогда расстояния от точек A и B до плоскости пропорциональны длинам отрезков AC и BC.
- 130. Токи A и B удалены от плоскости α на расстояния соответственно a и b. Точка C делит отрезок AB в отношении AC : BC = m : n. Найдите расстояние от точки C до плоскости α .
- 131. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины ребер : AB = 3a, AD = 4a, : $AA_1 = a$. Найдите расстояние до плоскости AB_1D_1 от следующих точек: a) A_1 ; б) D; в) точки E, симметричной точке B относительно D; г) C.
- 132. На ребрах AC и MC правильного тетраэдра MABC с ребром a взяты соответственно точки E и C_1 середины этих ребер. Найдите расстояние до плоскости BC_1E от следующих точек: а) M; б) D середины ребра AM; в) B_1 середины ребра MB; г) C.
- 134. Найдите расстояние от вершины A_1 куба $ABCDA_1B_1C_1D_1$ с длиной ребра a до следующих плоскостей: а) AB_1D ; б) DBP, где точка P середина ребра B_1C_1 ; в) BC_1D .

Расстояние между скрещивающимися прямыми

Определение. *Общим перпендикуляром* двух скрещивающихся прямых называется перпендикулярный им отрезок, концы которого лежат на данных прямых.

Теорема. Общий перпендикуляр двух скрещивающихся прямых существует и единственен.

Теорема. Расстояние между двумя скрещивающимися прямыми равно длине их общего перпендикуляра.

Полезные советы

Чтобы найти расстояние между скрещивающимися прямыми, можно:

- 1) Построить их общий перпендикуляр и найти его длину;
- 2) Провести через одну из них плоскость, параллельную другой, и найти расстояние от любой точки второй прямой, до этой плоскости.
- 3) Провести через них параллельные плоскости и найти расстояние между ними
- 4) Провести через одну из них плоскость, перпендикулярную другой, и найти в этой плоскости расстояние от точки ее пересечения со второй прямой до первой прямой.
- 135. На ребрах AD, AB, CC₁, A_1D_1 и A_1B_1 куба ABCDA₁B₁C₁D₁ взяты соответственно точки Q, P, C₂, R и V середины этих ребер. Считая ребро куба равным a, найдите расстояния между прямой A_1C_1 и следующими прямыми: a) CQ; б) DC₂; в) DR; г) DV; д) QT, где точка T середина отрезка A_1B .
- 136. Боковые грани призмы $BACA_1B_1C_1$ квадраты. Считая AB = a, найдите расстояния между прямой AB_1 и следующими прямыми: а) CC_1 ; б) CD, где D середина ребра AB; в) BC; г) прямой, проходящей через середины ребер AC и CC_1 ; д) BC_1 .
- 137. В основании пирамиды MABC лежит треугольник с прямым углом при вершине С. Ее боковое ребро МС перпендикулярно плоскости основания, а отношение ребер AC:BC:MC = $1:1:\sqrt{2}$. На ребрах MA, MC, AC и AB взяты соответственно точки A₁, C₁, D и E − середины этих ребер.
 - 1) Считая BC = a, найдите расстояния между прямой MB и следующими прямыми: a) DE; б) A₁D; в) AC; г) A₁C₁; д) C₁D; е) C₁E.
 - 2) Найдите углы между прямой MB и прямыми а) DE; б) C_1D ; в) C_1E .
- 138. В правильной четырехугольной пирамиде SABCD боковая грань равносторонний треугольник со стороной 2. Точка Q центр грани CSD. Найдите угол и расстояние между прямыми BC и AQ
- 139. Найдите расстояние между диагональю DB_1 куба $ABCDA_1B_1C_1D_1$ с длиной ребра a и прямой D_1C .
- 140. В основании пирамиды SABCD лежит равносторонний треугольник ABC, длина стороны которого равна 4√2. Боковое ребро SC перпендикулярно плоскости основания и имеет длину 2. Найдите величину угла и расстояние между скрещивающимися прямыми, одна из которых проходит через точку S и середину ребра BC, а другая через точку C и середину ребра AB.